

Alterations in electrocardiogram waveform following trauma and incubation of fear in rats

Maria Campanile¹, Kaitlin Castell¹, Irwin Lucki Ph.D. ^{1,2} Caroline A. Browne Ph.D.¹

¹Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814 ²Department of Psychiatry, Uniformed Services University, Bethesda MD 20814

Group 1

INTRODUCTION

- The estimated lifetime prevalence of posttraumatic stress disorder (PTSD) is 10-30% and of great concern for military medicine ¹⁻³.
- More than 50% of individuals remain refractory to treatment ⁴
- Trauma may manifest in altered behavioral patterns and physiological responses when exposed to the context in which the trauma occurred.
- Recall of the trauma (re-experiencing/ intrusive thoughts) can incubate overtime.

a

HRV %CV

 This process of fear incubation and its physiological impact are often overlooked in preclinical models.

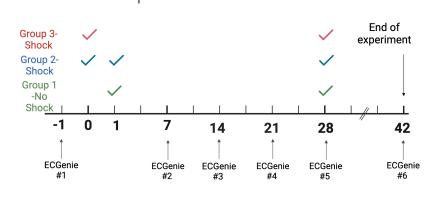
Objectives

- 1. Characterized a rat model of incubation of fear.
- 2. Assess the impact of trauma on the electrocardiogram (ECG) waveform to determine cardiovascular profiles of trauma.

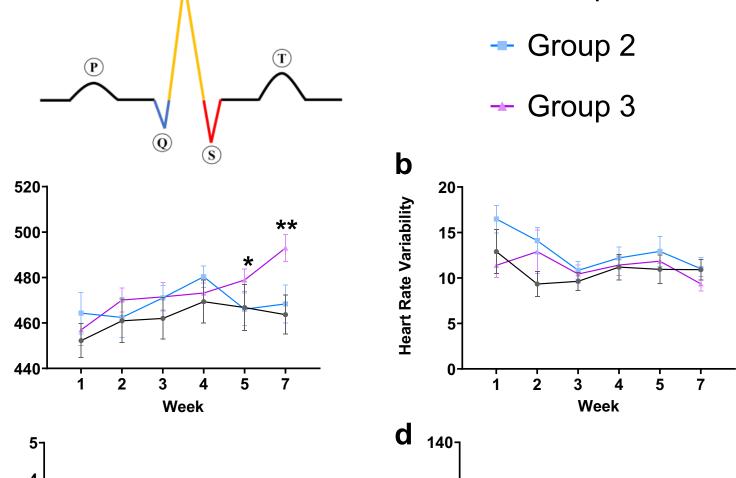
METHODS

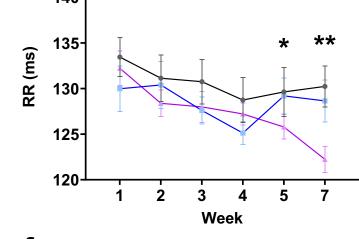
Animals: Male Sprague-Dawley Rats

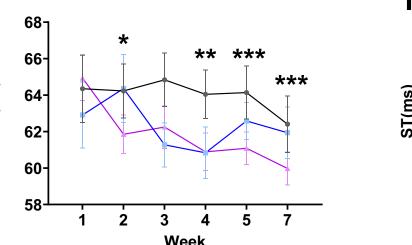
Group 1: Control - no shock

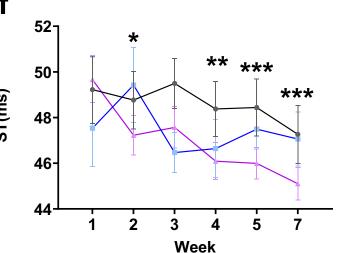

Group 2: Shock - Recall day 1

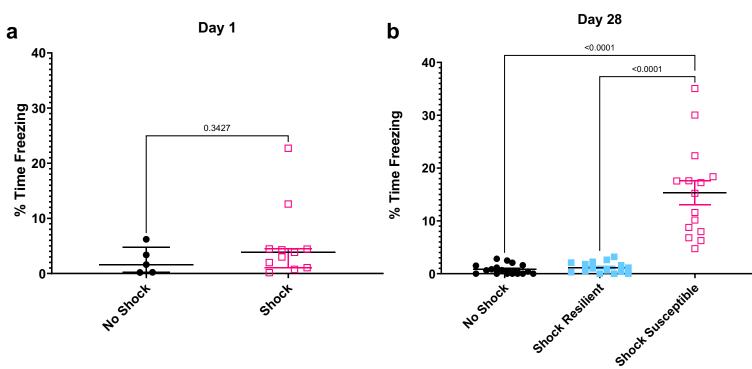
Group 3: Shock - Recall day 28


Incubation of fear: Rats were administered a single 1.5 mA shock (2 s duration), occurring approximately 120 s into their 180 s session. Contextual fear memory recall was assessed in sound attenuating chambers (Coulbourn, Inc), and measured as percentage of time freezing, during a 180 s test session on day 1 (group 2), or day 28 (group 3) post conditioning.


Electrocardiograms (ECG): Tracked weekly using the ECGenie Clinic and analyzed using the EzCG Signal Analysis Software (Mouse Specifics Inc.)


Exposure to Chamber


RESULTS



Week

Persistent alterations in ECG waveform in rats with incubation of fear

There was a main effect of shock on **a)** Heart Rate **b)** heart rate variability, **c)** CV% of HRV **d)** R-wave interval, **e)** Q-T interval (QT) and **f)** ST segment. Dunnett's multiple comparisons for within group assessments determined significant differences for several measures relative to their baseline profiles on week 1. The symbols *, ** and *** represent p = 0.05, p = 0.01, and p = 0.001 respectively between Group 1 and Group 3.

Incubation of fear apparent at 28 days post shock

On day 1 post conditioning (Group 2), no difference in freezing behavior was evident (p=0.3427). When retested at day 7 and day 28 (data not shown). , Group 2 (Day 1 recall) did not exhibit incubation of fear. In contrast, on day 28 post conditioning (Group 3), animals exhibited greater than control levels of freezing behavior (F(2,44)= 20.15, p<0.0001). Based on a criteria of mean +/- 2*SD as a cut off, 15/30 animals were deemed shock susceptible.

DISCUSSION

- Incubation of fear was observed on day 28 post shock, with 50% of animals showing the trauma associated phenotype.
- A clear physiological impact of shock on ECG profiles was evident in the later weeks following stress exposure.
- The persistent physiological differences during fear incubation in rats may be similar to the lasting impact induced by trauma in humans.
- Conclusions
- 1. The incubation of fear model is feasible and will be characterized further.
- The persistent ECG alterations post shock are reliable. Normalization of ECG profiles by this non-invasive method, will be an additional screening tool for novel therapeutics

ACKNOWLEDGEMENTS

Funding: Congressionally Directed Medical Research Programs; PRMRP award number W81XWH-21-2-0011.

Conflict of Interest: None

Disclaimer: The content and conclusions do not necessarily represent the official position or policy of the Uniformed Services University of the Health Sciences, the Department of Defense, or the U.S. Government.

REFERENCES

- 1. Nissen LR, Karstoff KI, Vedtoffe MS, et al. Cognitive ability and risk of post-traumatic stress disorder after military deployment: an observational cohor
- 2. study. *BJPsych Open*. 2017;3(6):274-280. Published 2017 Nov 8. doi:10.1192/bjpo.bp.117.005736

 Hoot MR, Levin HS, Smith AN, et al. Pain and chronic mild traumatic brain injury in the US military population: a Chronic Effects of Neurotraum of the Park of 10.019.02640.1469.1477. doi:10.1090/02600052.2018.1482427
- 3. Consortium study. Brain Inj.2018;32(10):1169-1177. doi:10.1080/02699052.2018.1482427

 Brownlow JA, Zitnik GA, McLean CP, Gehrman PR. The influence of deployment stress and life stress on Post-Traumatic Stress Disorder (PTSD diagnosis among military personnel. J Psychiatr Res. 2018;103:26-32. doi:10.1016/j.jpsychires.2018.05.005
- diagnosis among military personnel. J Psycrinatr Res. 2018;103:20-32. doi:10.1010/j.jpsycrinies.2016.03.003

 Haveman-Gould B, Newman C. Post-traumatic stress disorder in veterans: Treatments and risk factors for nonadherence. JAAPA. 2018;31(11):21-24 doi:10.1097/01.JAA.0000546474.26324.05